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Nano-Mechanical Array Signal
Processor Program

r 7 * Goal: Create technology for
Clamped-clamped beam arrays of precision, high Q,

nano mechanical resonators

..ﬂ and structures for RF-signal
Free-free beam ~ processing (up to 1GHz).

« Challenges: Nano-scale
precision fabrication, efficient
m/ coupling and transduction

mechanisms, overcoming

@ loss mechanisms.
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MEMS Provides Size Reduction
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NMASP

« Motivation for Program

— Enable >100X reduction in size & power consumption & 10X
improvement in performance for UHF wireless communication.

« Military Impacts

— The development of NMASP will enable ultra miniaturized
(wristwatch or hearing aid in size) and ultra low power UHF
communicators/GPS receivers. Their uses can greatly improve the
mobility and location identification of individual war fighters, as well
as standalone wireless sensor clusters.
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NMASP

« Start Date: 2001 End Date: 2004
* Program Status: On-Going

— Precision in material growth technology attained
— Working on methods for coupling resonators

— Scaling up arrays of devices

— Aiming to have some demo’s later this year

Microsystems Technology Office
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Principles of Mechanical Resonators

Annular
Nodal
Anchor
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Nanomechanics and Resonators

« SAW/BAW filters are current state-of-art

— Resonant frequency strong function of material thickness
— Large devices, separately packaged

« MEMS processes offer ability to fabricate resonant beams
and structures
— High resonant frequencies with low force constants (f goes as W/L?)
— Small length, width, but also small gaps (R goes as gap?)

'..';.

:
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Caltech 330 nm-wide twin resonators
(fo = 70.7 MHz, Q = 20,000)

Microsystems Technology Office

U. Michigan radial polysilicon
f,~200 MHz, Q ~20,000
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Why Nano-Resonator Filters?

 Integrated resonators that implement high-Q filter functions
with huge reductions in power and volume

* Arrays of resonators that allow analog spectrum generation
and analysis

« Enable new transmitter and receiver architec_:tures: secure,
ultra-low power, multi-standard communications!

Microsystems Technology Office
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Resonator
Topologies Filter Topologies

r 7 /Parallel Resonators
Clamped-clamped beam I
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Approach

Silicon-based process technologies (GA Tech, Michigan,
CMU, UCB)

Piezoelectric (U. MD/Northrop, Honeywell, JPL, Draper,
HRL, UCSB)

Carbon Nanotubes (JPL/Brown, UCI)

Arrays and Interconnections
RF Architectures

oo
oo

oo
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NMASP Program Schedule

Phase 1: 3D Nano Device

Design & fabrication methodology
Temp. stability, low drift, & tunability

Phase 2: Uniform Nano Arrays

Array uniformity
Interconnect & isolation

Phase 3: Integration

Process integration with CMOS
System optimization & packaging

FYO1 FYO02 FYO3 FY04
Q1/Q2|Q3/Q4|Q1/Q2|Q3/Q4/Q1 Q2/Q3/Q4/Q1/Q2/Q3|Q4
¢ BAA

|
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Piezoelectric Resonators

sense
electrode

piezoelectric
film
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* ZnO and PZT resonators demonstrated (UMd)
* Unsatisfactory performance due to poor Q and ultimate
frequency limits

 Good electromechanical scaling to microwave frequencies
(w12 for piezoelectric vs w2 for capacitive)

 Good microfabrication scaling (strain-based vs. displacement-based)
 Low-voltage operation (CMOS levels and below)

Microsystems Technology Office
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Why AIN? AlGaAs?

AIN Al, ;Ga, ,AsS
vy, [M/s] 11270 4934
K2 @, mode) 0.26 0.02
€ 9.14 12.0

m AIN:
B Excellent figures of merit
B Strong potential for near-term discrete-chip filters
B AlGaAs:
B Lower figures of merit, but:
B Well characterized epitaxial processing for high quality single-xtal films
B Integration with high-speed electronics and optoelectronics
W Directly implementable in standard HEMT processes




NMASP Materials: AIN on Silicon

Crystalline Orientation
controlled by Sputtering Pressure

XRD: (002) peak _

//Thin Electrode

Epitaxial AN Piezoelectric

1.8 1 1
3 3.5 4 4.5 5 5.6 6 6.5

Sputtering Pressure [mTorr]

(002) FWHM [deg. omega]
N
N

Silicon

Airgap

SEI 3.0kV >X40.,000 100nm

» - .
3.5 4 4.5 5 5.5 6 6.5
Sputtering Pressure [mTorr]

Microsystems Technology Office

Relative Stress [200 MPa/Div]
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Precision Growth of GaN at Honeywell

*Highly Uniform GaN film
(< 1% thickness non-
uniformity across a 4”
wafer)

*High resistivity GaN film
(> 20 MOhm/square)

*Seed layer developed
(minimized pitting)

*GaN resonator layer
developed (2 micron

thick layers without ! VA LR
CraCking) 2.0kV 12.3mm x10.0k SE(L) 5/14/03 3.00um

Blanket single crystal film, 1 micron thick, grown on
4 inch diameter Si wafers. Thickness and roughness
controlled within few nanometers (dust speck is
necessary for focus on the mirror surface)

Microsystems Technology Office
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Alternate materials

Material | Young's Density | Thermal Thermal | Specific | Diff.
Mod. = kg/m®  Cond. | Expansion  Heat | Ko/Ca |(E,%%7,/C,)
GPa W/m K 10K Jkg-K 10°
10° 10’ 10°
Silicon* 2.3 ‘ 0.668 VKL 1.55
Diamond 472 1.8
£
SiC* 700 3.2 3.50 6.4 0.8 4.4 30.6
GaAs* 75 4.9 0.46 6.9 - - ~3
AL,O3 275 3.62 0.36 6.57 0.8 45 11.1
SiO; 70 2.5 0.014 0.5 1.0 014 .02
(amorphous)
Quartz* 100 2.6 0.1 0.55 787 127 04
SizN, 255 3.1 0.19 2.8 0.7 0.27 3.8

@l £ single crystal

Microsystems Technology Office
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CVD Diamond “MEMS Paddle”

Measured resonant frequencies
6-30 MHz
Quality factors
2400-3500
Translational mode only

He0URO0C L EONM T e e s T omm
#24 LS~HGC

" Q limited by attachment loss

x10000

L. Sekaric — Cornell R

Microsystems Technology Office

200nmE o
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CVD Diamond Fabrication

E-beam resist

/C Start: CVD deposited
/SiO_z material on oxide
<+« Si coated wafer

E-beam lithography
and development

Metal mask deposition
and lift-off

RIE etching

Release (in BHF)

ccccccccc

IIIIII
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Results: doubly clamped beams
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Resonant frequencies
measured up to

Q~1000

L. Sekaric, J. M. Parpia, H. G. Craighead
T. Feygelson, B. H. Houston, J. E. Butler

S TECH)
NS T

Sajlgt . (Dec. 2002)

Microsystems Technology Office

_ Frequency (Hz)_
—

—
@

J.

Beam frequency vs. length

——y=0.0019031 * x*(-2.0146) R=0.99272
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Beam length (m)
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Energy Dissipation in NEMS

1 1 1
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CPboundary C?TED

C?bulk

C?Surface

Contributing processes:

e metal films

e boundary losses

e processing induced damage

e thermoelastic dissipation

o surface effects (not just roughness)
e other?

What are the fundamental limits?
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Modeling and Design:
free-free resonators

I I
---| — Pure Polysilicon
‘| - Composite Polysilicon

—

Free-Free E
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Frequency [MHZz]

Microsystems Technology Office

Approved for Public Release, Distribution Unlimited Fall DIRO Review 021126



Benchmarking New 3-D Software with Experimental
Quartz Resonator Data

12| (Ohms)

Impedance Magitude plot
— T —

- Coventor Bl
= Estimated model ]
— Statek®

1 1 1 1 1
0.99 0.995 1 1.005 1.01 1.015 1.02
Frequency (Hz) x107

COVENTOR

Details:

* 10 MHz TS mode AT-cut quartz
strip resonator by Statek

 Analysis tool: beta version of
commercial FEA software (Coventor)

« Compare FEA to measurements
made by Statek

 Benefits: Demonstration of a high
degree of correlation provides
confidence in the new tool

Equivalent circuit elements:

*Experimental data:
C,=2.24pF, C,=5.45fF, R;=15.5Q

*Numerical analysis:
C,=1.17pF, C,=4.36fF, R,=75.5Q

*Statek measurements provided by Greg Burnett

Microsystems Technology Office
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Energy Trapping vs. Electrode Width - Optimizing Q

Electrode

width

Cross-section view (X-Z)

Top view (X-Y)

Remarks

30um

N
h

COVENTOR

* Best trapping
under
resonator area

e little flexural
component

40pum

WA A

COVENTOR

50um

E-01
COVENTOR

* large flexural
component

* trapping not
confined to
resonator but
extends under
electrodes

Microsystems Technology Office
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733 MHz Self-Aligned Radial Contour-Mode
Disk uMechanical Resonator

Self-aligned stem for reduced anchor dissipation
Polysilicon electrodes for better gap stability

Q > 6,000 seen even in air (i.e., atmospheric pressure)!
Below: 20 um diameter disk

Design/Performance:

R=10um, t=2.1um, d=800A, V=6.2V
= nd =

Self-Aligned Stem f,=732.9MHz (2" mode), Q=7,330

-85

f, = 732.9MHz
Q =7,330 (vac)

o
)
1

Thensmitsioom ()

-1 OW

~ 3 == -105 T T T
uMechanical Disk 732 732.5 733 733.5 734

Resonator ' Frequency (MHz)
Microsystems Technology Office _ . [U. MiChigan, 2002]
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1.14-GHz Self-Alighed Radial Contour-Mode
Disk uMechanical Resonator

Self-aligned stem for reduced anchor dissipation
Operated in the 3" radial-contour mode

Q > 1,500 seen even in air (i.e., atmospheric pressure)!
Below: 20 um diameter disk

Design/Performance:
R=10um, t=2.1um, d=800A, V,=6.2V
Self-Aligned Stem f,=1.14 GHz (3" mode), Q=1,595
‘@ -77 f.=1.14 GHz
S, _78 - Q = 1,595 (vac)
E _79 _ Q = 1,583 (air)
® -80 -
= -81 A
a -82 -
§ © -83 -
= -84 | |

uMechanical Disk 1138.5 1139.5 1140.5 11415

Frequency [MHZz]
[U. Mich., 2003] rr—

Resonator
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VHF and UHF Resonators

Q SOI-Based HARPSS Technology
»10-30 micron thick films
> Ultra-stiff resonators with high width to height

ratio
. . . Pad oxide and LPCVD nitride for
>ReSU|tS IN Sma”el‘ eqU|Va|ent I‘eSIStance 9 |al‘gel‘ insulation. Trenches define

resonator boundary.

7

LPCVD sacrificial oxide and
polysilicon. Polysilicon patterned,
Metallization

-

A,

Electrode polysilicon patterned
! release openings etched in SCS.
11-aul 02 WD35.4mm 150KV x1Zk  2.5um Release and undercut in HF:H,0

Microsystems Technology Office gap SpaCing 9 ,9 oal: 1 0nm
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Single Crystal Silicon Disk Resonators

AR loa MAG 2 dBf REF -92 dE -54.936 dB
§ : § ; : : ; D 147,813 MHz
.......... e e e e e TR
: ' : : § ' : B4 kHz
Tt SO POE ST TP RUUUE VS TUPUOE SUROTUPPOTE SRPPRPIE I st ....J,f-.ﬂ.?..Bl.zBS..mHz)
a4 B :
: : : : % : : 395'258
.......... IDS'S _.::QSE.GB
: : : : Wi : aLiF:  <3.848154 kHz
.......... &R.F:?lE.Z‘IHZ
' .........................................................................................
[
MW
oo TR G | | i
SCS Disk
— I I —————————— IF BH 32 Hz FOMER 15 dEm TP 23,59 sec
12-Mar-03 WD36 .0mm 25 _0kY¥ x2 5k 20um CENTER 147.814 MHz SPAN 288 kHz

side-supported SCS disk resonator Q=40,000 @ 147.8MHz

90nm capacitive gaps
Diameter=30um, Thickness =3 pm

vvvvvv

vvvvvvv

Microsystems Technology Office
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TCF of Capacitive HARPSS Resonators

d Temperature Coefficient of Frequency

» Temperature dependency of the resonating material’s Young's
modulus will be the dominant contributing factor.

» Thermal Expansion = Dimensional Change

/\ 148.1
148
Mechanical Electrical g 1479 N\\
Stiffness Stiffness < s
(¢]
S 147.7
7 TSN =)
’ N 2 93-147.6
Lof 11l E\TldR W, Ae 1 dg &
Lrtg . Laep’ 1 ax L s
S or ‘\2 E dI') R dT Kg3 g drT Frequency Drift = -26ppm/°C K
~ ’/ 1474 T T T T T T T

0 20 40 60 80 100 120 140 160
Temperature (C)

Measured temperature characteristic for the
150MHz disk resonator

Microsystems Technology Office
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Alternate Designs for Large Arrays

e Using the same fabrication process, designs which rely only on lateral
dimensional changes can be fabricated in temperature compensated X-cut
quartz

.l
LEGS TOP METAL T 77 QUARTZ
ELECTRODE % Z PLATE\l

-------------

L ONGITUDINAL MODE
SUPPORT OF RESONATOR /
SUBSTRATE 036000002

For 300 MHz: resonator length L ~ 10 um

Meshed longitudinal design in 3-D Simulator
(resonant frequency scales like 1/L)

Microsystems Technology Office
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Integrated Thin Film

1. Starting
Materials

I O T | O
L] (et e b e et ] [
(U ) I 0 0 A
Lf ey ] eyl
AT T T Y
I | O O T |
T ) B O T T O
PR I T O
Lt ey e g ] L
(AP A P OO O O
L) F{ bbb L L) bl il
L) oy Ryt e

2. Etch Cavities
in Si

3. Pattern and
Metallize Top
Metal on Quartz,
Including Tuning
Pads

4. Bond Quartz
to Si

,r Mag S09X Date: 0307020
\' 66(:0 HMode: B Surface Data Time: 12:130
5. Thin Quartz

Sutice Sttt | 2] - 5 to<10um
Fx 056 i

m m
Ry 0.70mm
Rz 560 m 1
Rt 716 mn

a

m

Seup Py & ! 6. Pattern and
Sige: 368 X240 . .
sopig o | = Metallize Via
Frcesed Optns 2 i Holes in Quartz
Temns Remowed: "
it a <m
Pilarkg 0
Hore 3

0 T T T T T T T ul

A

Title:

QUARTZ

SILICON

lll-V OR SiGe
SUBSTRATE

N /]

SILICON

— [ .
QUARTZ

QUARTZ

pL_L_=m va

SILICON

PL_L_ENN ve

W/

Process Flow for Nanoresonators

Quartz Resonators

0100-60-013

REE W
EE—w

1l-V OR SiGe SUBSTRATE

7. Pattern and
Metallize Bottom
Electrodes on
Quartz

8. Pattern and
Etch Quartz
Resonator

9. Etch Protrusion
in [ll-V Wafer

10. Pattern and
Metallize
Substrate,
Including
Bonding Pads

11. Bond Si/Quartz
to lll-V

QUARTZ —

SILICON

11l-V OR SiGe SUBSTRATE

12. Remove Si
Substrate

_

1I-V OR SiGe SUBSTRATE

HRL Labs
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FIB Frequency Tuning During Real-Time Monitoring

19.9995
19.99945 /Neeeeeeeeeeeeeeeee
19.9994 /
| 19.99935
S / Beam off
2| 19.9993 / Y,
2" 19.99925 :
=
S 19.9992 - . -
o Short Term Stability: 0.15 ppm
O] 19.99915 - g
- 4
19.9991
19.99905 ‘ ‘ ‘ ‘
0:00:00 0:01:26  0:02.53 0:04:19 0:05:46 0:07:12
Milling Time (hr./min./sec.)
20.0001
<[ 2 Frequency variation during
E 19.9999 venting to N, and re-pumping —
~| 19.9998
>
= : 7 Q| 199907 % §\\ Vent ——— Re-pumped
> . s % 19.9996 (
% ) e v N o 8 10,9005 . f1 _f2:1 Hz 0
6 | it —
- . : . 0:00:00 0:28:48 0:57:36 1:26:24 1:55:12 2:24:00 2:52:48 3:21:36
pmmercial 20-MHz Shear-Mode . .
OSClllator Time (hr./mln./SGC.)

Microsystems Technology Office
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Nanometer Capacitive Gaps

[ Self-aligned vertical capacitive gaps

defined by the sacrificial oxide layer
— Potentially reducible to 10nm

R, a gap?

Polysilicon

A Capacitive gaps as small as
80nm demonstrated

Capacitive Gap = 80nm

B T Drive Electrode Length = 40um
— S N Sense Electrode Length = 40um
........ RS TS R S S - P L Beam Length = 200um
B T £ N f,:::sa; 36[]3 T = Beam Width = 3um §
JFr | -1B5,.BET Hz — )
i R S @O -I-h i 11-Jul-02 5554 15.(;7k;:r.x.12.k. "2 5um
| S : eoretical
" (o3 -22.08kHz
............................................................. E 500 N
i _________ Lo ______ _______ _________ _________ 2 i ]
94.5%kHz/V O 28% tuning range for

T8 iz FOOEE -98.5 obm GaF_11.87 mec
" 16, 575 kiz SPAN § iz

]
3 00 05 10 15 20 25 i
g o the 80nm gap device

Microsystems Technology Office
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SOl Nano-scale Disk Resonator Arrays

Pglysmcon electrode. 0 Xuppo i

Coupling
Nano-Wires

Tuning

To Front End On-Chip
Electrode

Electronics

4

i~ _J - c 3 4 .
Signal| /s Order_— \°\°
X | N
SC Silicon Resonators & |2 Order = N
3 / \‘\
Nanometer é’
insize & |3 Order N
airgaps § / .
= ‘\
4th 0rder
v AN
/ N
Frequency GA Tech

Microsystems Technology Office
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Mechanically-Coupled Resonator
Arrays for Higher Power Handling

* Problem: small size = lower power handling

« Solution: combine signals from an array of microresonators
— problem: all resonators must be at the same frequency

— solution: mechanically couple them to force all to resonate at the same
frequency

_40 |° Resonator Array
\

3 Resonator Array

1;' Coupling
'~ Points

Electrode
Interconnect

Single Resonator

-90 | vp=52V, 200uTorr,

f : _100 | Lr=16|.1m, h=2p.m,
- d,=1800A
110 — '

Square-Plate 4 63.65 63.68 63.70 6373 63.75 63.78 63.80
Micromechanical : Frequency [MHz]

Resonators-

Transmission [dB]
iy
o

[Demirci, Nguyen 2003]
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Future Work: uMechanical Filters

: Roi Input
* Lower the impedance of GHz Electrode

micromechanical resonators v; () O\

« Create umechanical circuits L

using such resonators Structure
Electrode

« Example: umechanical filter -

OF — —_— VP
5] 1 T

A0 ] Output
-15 F - Electrode

-20 | -
25 | -

-30 | - Electrodes —§, L
-35 | -
40 | 1 =
45 | - -
-50 |, . ! 1= S -
7.76 7.80 7.84 7.88 - | -
Frequency [MHZ] Coupling Spring | Anchor

4

Longitudinal-Mode
Coupling Beams

Disk
Resonator

Previous Work:

Transmission [dB]

= E—
e e
= -
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Can Trimming be Avoided

* We have invented a 2-D array
approach that allows disorder to be ~ RF/Baseband Filter Design

averaged in a second dimension 2D
resulting in significantly improved 10
performance.
« Can “trimming” be avoided? o .
Signal Inp Signal Propagates jg 30 A
" 40 ominal Band ‘dth = 0.4%
isorder = 1.09
=50,000
50 : Cc uplm“: =0 ?“
il | - Ideal 7th order filter
i/ | = 1-D chain of 7 oscillators
il | —— 2-D array with |7x35 c‘>§c‘illators

-89994 0.996 0.598 1 1.002 1.004 1.006

Normalized Frequency, (@/C‘)center)

J. Judge, et al. in press
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MEMS RF Spectrum Analysis

Broadband RF Spectrum

Bank of MEMS

/\ j\ /\ /\ Filters

AN
/E}\ /z}\ /2}\ /ZI‘\ /;A\ /;A\ Low DR ADCs

High Dynamic-Range D|g|t|zed Spectrum

Desired Spectrum

e Broadband RF “digital” radio requires fast high, dynamic range
ADC and broadband RF front-end

o Bank of active MEMS resonators selects narrowband signal
 Low performance __ converters digitize each narrowband spectrum

e Relaxed requirements on ADC performance result in power savings
and integration

Microsystems Technology Office
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“Analog OFDM” Subsamping Transceiver Using
NM Filters

—» NM Filter foo
RF Filter X‘ A
LNA

(Low Q) —» NM Filter
—— D
\ ) —» NM Filter
Y \ v J v
Prefilter: micro- Rejects non-linear LNA components
machined LC passive Shapes LNA thermal noise

Selects System Frequency Bands

NM filters enable an integrated “comb”
Note: no local oscillator - reduced power

Microsystems Technology Office
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Future Directions

y

N
NM Filter friock
RF Filter | }j A

(Low Q) LNA NM Filter
Antenna components — D
\ ) NM Filte

\ b

Prefilter: micro- Y
machined LC passive Rejects non-linear LNA components
Shapes LNA thermal noise
Selects System Frequency Bands

y

SiC filter
array

Autotransformer for -
Broadband match Spirals on dielectric Assembly of NM

substrate filters
: : CMOS substrate
High performance antennas, autotransformers, and inductors
UC Berkeley

Microsystems Technology Office
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Transmitter Architecture

—— — & NM Filter
Wideband
Pulse N—»| NM Filter PA
Generator
N—»| NM Filter
\ )\ J
Y Y
- Switches select - Shapes wideband pulse into tones

transmission tones amplified & transmitted by PA

Microsystems Technology Office
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Post-CMOS Poly-SiGe MEMS

@ Microshell Encapsulation

(anchors not shown)

Poly-SiGe RF <
MEMS technology

Shielded Interconnect
to Drive Electrode\>

DC Bias to___|
Resonator

5-level metal <
foundry CMOS

Bi-layer deposition process
(2.8um) to balance strain
and strain gradient
Residual stress: 3 MPa
tensile

100um EHT = 3.00 kV
WD= 15mm

Signal A = SE2 Date :28 Oct 2002
Photo No. =494 Time :16:08

Microsystems Technology Office

Shielded
Vertical Signal
— Path to Gate of
Input Transistor

film can be re-crystallized without affecting
underlying Al metallization

U

—Drive

+Drive

-Sense +Sense

Approved for Public Release, Distribution Unlimited
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Thin-Film Bulk Acoustic Resonators

« Commercial off-the-shelf discrete components

* Frequency is a function of thickness -

single frequency
per FBAR chip

 Use to demonstrate
new transceiver
architectures

Agilent Technologies FBAR duplex filter

Microsystems Technology Office
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Carbon Nanotube Filter

Al anodization = Co deposition —» C,H pyrolysis Nanotube Array RF Filter

Nanotube array oscillating i
mechanically atsingle, Outgoing, namow band
natural resonance RF wave transmitted by

Incoming, broadband  frequency induced by the  thecharged, oscillating

) M\ gt boaten o

Normalized tube count |

M
20 40 60 80

Diameter (nm)

1@KU %308,800 108nm WD 9
reating and assembllng a umform array of MWCNT’s for RF

detection and filtering

Approved for Public Release, Distribution Unlimited
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CNT fab methods and results to date

Develop a base technology for fabricating
ultra-uniform, highly-ordered and
electrically accessible carbon nanotube
arrays for the study & device applications.

Results to date: excellent uniformity and
ordering (95%+), as well as excellent

. & ( ? ) ’ . As compared to the best of

electrical, optical and mechanic conventional approaches

accessibility.
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Chip in Chip Resonators in Integgated Package

SEM of package lid

with inductors
Inductors

Control

0.5 mm

Analog to
Digital
Converter

SEM of two filters
- 3¢ezonator each

Nano-Mechanical Low
Array Noise
Amplifier

V 16.1mm x60 SE(L) 5/20/03
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End Slide

DARPA NMASP Program in final phase
High Q, nanoscale structures for RF resonators

Nano-scale process technologies could be used in
resonator fab, define gaps, coatings, etc.

Need to think about how to get close to 50 Ohms
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